کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6856648 1437967 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Similarity preserving multi-task learning for radar target recognition
ترجمه فارسی عنوان
حفظ یکپارچگی یادگیری چند کاره برای شناسایی هدف رادار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In this study, a statistical recognition model based on similarity preserving multi-task learning (SP-MTL) is developed for radar target recognition of high-resolution range profile (HRRP) data. A similarity preserving constraint, which describes the similarity information of HRRP samples, is introduced into multi-task learning to enhance the discriminative capability of the statistical model with limited training data. In addition, the SP-MTL model can be applied to the model prediction of new data based on transfer learning theory. Experiments on measured data show that the proposed model can achieve better recognition performance than traditional methods when training data is small. The application of the SP-MTL model to model prediction based on transfer learning theory can improve the learning precision of the new statistical model compared with the single-task learning of new data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 436–437, April 2018, Pages 388-402
نویسندگان
, , , ,