کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6856935 | 1437972 | 2018 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A semi-supervised approximate spectral clustering algorithm based on HMRF model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Before clustering, we usually have some background knowledge about the data structure. Pairwise constraints are commonly used background knowledge. For graph partition problems, pairwise constraints can be naturally added to the graph edge. This paper integrates pairwise constraints into the objective function of graph cuts and derive the semi-supervised approximate spectral clustering based on Hidden Markov Random Fields (HMRF). This algorithm utilize the mathematical connection between HMRF semi-supervised clustering and approximate weighted kernel k-means. The approximate weighted kernel k-means is used to calculate the optimal clustering results of HMRF spectral clustering. The effectiveness of the proposed algorithm is verified on several benchmark data sets. Experiments show that adding more pairwise constraints will help improve the clustering performance. Our method has advantages for the challenging clustering tasks of large-scale nonlinear data because of the high efficiency and less memory consumption.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 429, March 2018, Pages 215-228
Journal: Information Sciences - Volume 429, March 2018, Pages 215-228
نویسندگان
Ding Shifei, Jia Hongjie, Du Mingjing, Xue Yu,