کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6857291 | 661905 | 2016 | 45 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
BFPART: Best-First PART
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In supervised classification, decision tree and rule induction algorithms possess the desired ability to build understandable models. The PART algorithm creates partially developed C4.5 decision trees and extracts a rule from each tree. Some of the criteria used by this algorithm can be modified to yield better results. In this work, we propose and compare 16 variants of the PART algorithm from the perspectives of discriminating capacity, complexity of the models, and the computational cost, for 36 real-world problems obtained from the UCI repository. The use of the Best-First optimization algorithm to find the next node to develop in a partial tree improves the results of the PART algorithm. The best-performing variant also ranks first when compared to the well-established C4.5 algorithm and a modified version of the CHAID decision tree induction algorithm that handles continuous features, which is also proposed in this paper. In order to study its performance in comparison to other rivals, this comparison of algorithms also includes the original PART algorithm. For all performance measures, we test the results for statistical significance using state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volumes 367â368, 1 November 2016, Pages 927-952
Journal: Information Sciences - Volumes 367â368, 1 November 2016, Pages 927-952
نویسندگان
Igor Ibarguren, Aritz Lasarguren, Jesús M. Pérez, Javier Muguerza, Ibai Gurrutxaga, Olatz Arbelaitz,