کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6857419 | 665202 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using tensor products to detect unconditional label dependence in multilabel classifications
ترجمه فارسی عنوان
با استفاده از محصولات تانسور برای شناسایی وابستگی برچسب های بدون قید و شرط در طبقه بندی های چند زبانه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Multilabel (ML) classification tasks consist of assigning a set of labels to each input. It is well known that detecting label dependencies is crucial in order to improve the performance in ML problems. In this paper, we study a new kernel approach to take into account unconditional label dependence between labels. The aim is to improve the performance measured by a micro-averaged loss function. The core idea is to transform a ML task into a binary classification problem whose inputs are drawn from a tensor space of the original input space and a representation of the labels. In this joint feature space we define a kernel to explicitly involve both labels and object descriptions. In addition to the theoretical contributions, the experimental results of this study provide an interesting conclusion: the performance in terms of Hamming Loss can be improved when unconditional label dependence is considered, as our method does. We report a thoroughly experimentation carried out with real world domains and several synthetic datasets devised to analyze the effect of exploiting label dependence in scenarios with different degrees of dependency.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 329, 1 February 2016, Pages 20-32
Journal: Information Sciences - Volume 329, 1 February 2016, Pages 20-32
نویسندگان
Jorge DÃez, Juan José del Coz, Oscar Luaces, Antonio Bahamonde,