کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6857440 665202 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spoiler detection in TV program tweets
ترجمه فارسی عنوان
تشخیص اسپویلر در توییتر برنامه تلویزیون
کلمات کلیدی
تشخیص اسپویلر، برنامه تلویزیونی صدای جیر جیر معدن شبکه اجتماعی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In this work, we introduce a simple and powerful method of spoiler detection based on four representative features, which are significant indicators of spoilers. To identify and utilize four features, we conduct a precise analysis on real-world tweet data, and we build an SVM-based prediction model based on the result. Using tweets about Dancing with the Stars, and the final of the 2014 World-Cup, we evaluate the effectiveness of the proposed methods on spoiler detection tasks. According to the result, our method achieves greater precision than the competitors while maintaining a comparable recall performance. At the same time, our method outperforms the competitors in terms of processing time, showing that our method is sufficiently lightweight for application to the web-browser. Furthermore, to reduce the labeling cost, we introduce a semi-supervised approach that automatically re-trains the prediction model based on a small amount of labeled data. The experimental results show that the semi-supervised approach delivers performance comparable to that of the previous model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 329, 1 February 2016, Pages 220-235
نویسندگان
, , ,