کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6857569 665202 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Entropy-based discretization methods for ranking data
ترجمه فارسی عنوان
روش های انطباق مبتنی بر آنتروپی برای رتبه بندی داده ها
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Label Ranking (LR) problems are becoming increasingly important in Machine Learning. While there has been a significant amount of work on the development of learning algorithms for LR in recent years, there are not many pre-processing methods for LR. Some methods, like Naive Bayes for LR and APRIORI-LR, cannot handle real-valued data directly. Conventional discretization methods used in classification are not suitable for LR problems, due to the different target variable. In this work, we make an extensive analysis of the existing methods using simple approaches. We also propose a new method called EDiRa (Entropy-based Discretization for Ranking) for the discretization of ranking data. We illustrate the advantages of the method using synthetic data and also on several benchmark datasets. The results clearly indicate that the discretization is performing as expected and also improves the results and efficiency of the learning algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 329, 1 February 2016, Pages 921-936
نویسندگان
, , ,