کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6864337 | 1439538 | 2018 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Distribution preserving learning for unsupervised feature selection
ترجمه فارسی عنوان
توزیع حفظ یادگیری برای انتخاب ویژگی های غیرقابل کنترل
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
انتخاب ویژگی، حفظ تراکم، برآورد تراکم هسته، کاهش ابعاد، داده کاوی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Selection of most relevant features from high-dimensional data is difficult especially in unsupervised learning scenario, this is because there is an absence of class labels that would guide the search for relevant features. In this work, we propose a distribution preserving feature selection (DPFS) method for unsupervised feature selection. Specifically, we select those features such that the distribution of the data can be preserved. Theoretical analysis show that our proposed DPFS method share some excellent properties of kernel method. Moreover, traditional “wrapper” and “filter” feature selection methods often involve an exhaustive search optimization, feature selection problem is treated as variable of optimization problem in our proposed method, the optimization is tractable. Extensive experimental results over various real-life data sets have demonstrated the effectiveness of the proposed algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 289, 10 May 2018, Pages 231-240
Journal: Neurocomputing - Volume 289, 10 May 2018, Pages 231-240
نویسندگان
Ting Xie, Pengfei Ren, Taiping Zhang, Yuan Yan Tang,