کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6865916 | 678089 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
MD-ELM: Originally Mislabeled Samples Detection using OP-ELM Model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a methodology for identifying data samples that are likely to be mislabeled in a c-class classification problem (dataset). The methodology relies on an assumption that the generalization error of a model learned from the data decreases if a label of some mislabeled sample is changed to its correct class. A general classification model used in the paper is OP-ELM; it also provides a fast way to estimate the generalization error by PRESS Leave-One-Out. It is tested on two toy datasets, as well as on real life datasets for one of which expert knowledge about the identified potential mislabels has been sought.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 159, 2 July 2015, Pages 242-250
Journal: Neurocomputing - Volume 159, 2 July 2015, Pages 242-250
نویسندگان
Anton Akusok, David Veganzones, Yoan Miche, Kaj-Mikael Björk, Philippe du Jardin, Eric Severin, Amaury Lendasse,