کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6866952 | 679667 | 2012 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dimensionality reduction based on non-parametric mutual information
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we introduce a supervised linear dimensionality reduction algorithm which finds a projected input space that maximizes the mutual information between input and output values. The algorithm utilizes the recently introduced MeanNN estimator for differential entropy. We show that the estimator is an appropriate tool for the dimensionality reduction task. Next we provide a nonlinear regression algorithm based on the proposed dimensionality reduction approach. The regression algorithm achieves comparable to state-of-the-art performance on the standard data sets but is three orders of magnitude faster. In addition we describe applications of the proposed dimensionality reduction algorithm to reduced-complexity supervised and semisupervised classification tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 80, 15 March 2012, Pages 31-37
Journal: Neurocomputing - Volume 80, 15 March 2012, Pages 31-37
نویسندگان
Lev Faivishevsky, Jacob Goldberger,