کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6867010 | 679667 | 2012 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Three-way analysis of structural health monitoring data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Structural health monitoring aims to detect damages in man-made engineering structures by monitoring changes in their vibration response. Unsupervised learning algorithms can be used to obtain a model of the undamaged condition and detect which new samples of the structure are not in agreement with it. However, in real structures with a sensor network configuration, the number of candidate features usually becomes large. Therefore, complexity increases and it is necessary to perform feature selection and/or dimensionality reduction to achieve good detection accuracy. In this paper, we propose to exploit the three-way structure of data and apply a true multi-way data analysis algorithm: Parallel Factor Analysis. A simple model is obtained and used to train novelty detectors. The methods are tested both with real and simulated structural data to assess that the three-way analysis can be successfully used in structural health monitoring. Furthermore, the usefulness of the approach for feature selection is also analyzed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 80, 15 March 2012, Pages 119-128
Journal: Neurocomputing - Volume 80, 15 March 2012, Pages 119-128
نویسندگان
Miguel A. Prada, Janne Toivola, Jyrki Kullaa, Jaakko Hollmén,