کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6884972 | 695882 | 2016 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A model-driven approach for engineering trust and reputation into software services
ترجمه فارسی عنوان
یک رویکرد مبتنی بر مدل برای اعتماد و اعتبار مهندسی به خدمات نرم افزاری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اعتماد، شهرت، مهندسی مدل رانده شده، خود سازگاری،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
شبکه های کامپیوتری و ارتباطات
چکیده انگلیسی
The ever-increasing complex, dynamic and distributed nature of current systems demands model-driven techniques that allow working with abstractions and self-adaptive software in order to cope with unforeseeable changes. Models@run.time is a promising model-driven approach that supports the runtime adaptation of distributed, heterogeneous systems. Yet, frameworks that accommodate this paradigm have limited support to address security concerns, hindering their usage in real scenarios. We address this challenge by enhancing models@run.time with the notions of trust and reputation. Trust improves decision-making processes under risk and uncertainty and constitutes a distributed and flexible mechanism that does not entail heavyweight administration. This paper presents a trust and reputation framework that is integrated into a distributed component-model that implements the models@run.time paradigm, thus allowing the system to include trust in their reasoning process. The framework is illustrated in a chat application by implementing several state-of-the-art trust and reputation models. We show that the framework entails negligible computational overhead and that it requires a minimal amount of work for developers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Network and Computer Applications - Volume 69, July 2016, Pages 134-151
Journal: Journal of Network and Computer Applications - Volume 69, July 2016, Pages 134-151
نویسندگان
Francisco Moyano, Carmen Fernandez-Gago, Javier Lopez,