کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
688862 | 889577 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning decision rules for energy efficient building control
ترجمه فارسی عنوان
قوانین تصمیم گیری در مورد تصمیم گیری برای کنترل انرژی ساختمان کارآمد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تکنولوژی و شیمی فرآیندی
چکیده انگلیسی
While rule based control (RBC) is current practice in most building automation systems that issue discrete control signals, recent simulation studies suggest that advanced, optimization based control methods such as hybrid model predictive control (HMPC) can potentially outperform RBC in terms of energy efficiency and occupancy comfort. However, HMPC requires a more complex IT infrastructure and numerical optimization in the loop, which makes commissioning, operation of the building, and error handling significantly more involved than in the rule based setting. In this paper, we suggest an automated RBC synthesis procedure for binary decisions that extracts prevalent information from simulation data with HMPC controllers. The result is a set of simple decision rules that preserves much of the control performance of HMPC. The methods are based on standard machine learning algorithms, in particular support vector machines (SVMs) and adaptive boosting (AdaBoost). We consider also the ranking and selection of measurements which are used for a decision and show that this feature selection is useful in both complexity reduction and reduction of investment costs by pruning unnecessary sensors. The suggested methods are evaluated in simulation for six different case studies and shown to maintain the performance of HMPC despite a tremendous reduction in complexity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 24, Issue 6, June 2014, Pages 763-772
Journal: Journal of Process Control - Volume 24, Issue 6, June 2014, Pages 763-772
نویسندگان
Alexander Domahidi, Fabian Ullmann, Manfred Morari, Colin N. Jones,