کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
688978 | 889583 | 2014 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An intelligent integrated optimization system for the proportioning of iron ore in a sintering process
ترجمه فارسی عنوان
یک سیستم بهینه سازی یکپارچه هوشمند برای تناژ سنگ آهن در فرآیند پخت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل سازی یکپارچه هوشمند، بهینه سازی چند هدفه، مدل پیش بینی، تناژ سنگ معدن آهن، فرایند پخت
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تکنولوژی و شیمی فرآیندی
چکیده انگلیسی
The proportioning of iron ore is the first step of the sintering process. It mixes different kinds of iron ores with coke, limestone, dolomite, and returned sinter to produce a raw mix for the production of qualified sinter. The chemical components and proportions of the raw materials determine the chemical and physical characteristics of the resulting sinter, and thus the quality of the sinter and the amount of SO2 emissions. The prices of the raw materials and their proportions determine the price of the sinter. In this study, an intelligent integrated optimization system (IIOS) was developed for the proportioning step, which contains two phases: the first and second proportionings. First, the sintering process was analyzed, and the requirements of the proportioning step were specified. Next, an IIOS with two levels (intelligent integrated optimization, basic automation) was built. In the intelligent integrated optimization level, an intelligent integrated optimizer (IIO) produces an optimal dosing scheme. The IIO has three parts: a cascade integrated quality-prediction model, the optimization of the first proportioning, and the optimization of the second proportioning. Computational intelligence methods predict the quality of sinter. Then, the predicted quality indices are fed back to the optimizations of the first and second proportionings to find feasible optimal dosing schemes. The IIOS was implemented in an iron and steel plant. Actual runs show that the system reduced production costs by 43.014Â CNY/t and SO2 emissions by 0.001% on average.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 24, Issue 1, January 2014, Pages 182-202
Journal: Journal of Process Control - Volume 24, Issue 1, January 2014, Pages 182-202
نویسندگان
Min Wu, Xiaoxia Chen, Weihua Cao, Jinhua She, Chunsheng Wang,