کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
689117 | 889591 | 2013 | 6 صفحه PDF | دانلود رایگان |

Detecting windows or intervals of when a continuous process is operating in a state of steadiness is useful especially when steady-state models are being used to optimize the process or plant on-line or in real-time. The term steady-state implies that the process is operating around some stable point or within some stationary region where it must be assumed that the accumulation or rate-of-change of material, energy and momentum is statistically insignificant or negligible. This new approach is to assume the null-hypothesis that the process is stationary about its mean subject to independent and identically distributed random error or shocks (white-noise) with the alternative-hypothesis that it is non-stationary with a detectable and deterministic slope, trend, bias or drift. The drift profile would be typical of a time-varying inventory or holdup of material with imbalanced flows or even an unexpected leak indicating that the process signal is not steady. A probability of being steady or at least stationary over the window is computed by performing a residual Student t test using the estimated mean of the process signal without any drift and the estimated standard-deviation of the underlying white-noise driving force. There are essentially two settings or options for the method which are the window-length and the Student t critical value and can be easily tuned for each process signal that are included in the multivariate detection strategy.
► A new SSD algorithm is described which accounts for non-stationary drifts in process signals.
► Simple calculations to estimate the drift's slope and the mean and standard deviation of the process signal.
► Multivariate systems are addressed using the Sidak inequality correction.
► Two examples are provided which demonstrate the effectiveness of the algorithm.
Journal: Journal of Process Control - Volume 23, Issue 3, March 2013, Pages 326–331