کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6891836 | 1445341 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An efficient Fourier spectral exponential time differencing method for the space-fractional nonlinear Schrödinger equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A fourth-order time-discretization scheme based on the exponential time differencing approach with Fourier spectral method in space is proposed for the space-fractional nonlinear Schrödinger equations. The stability and convergence of the numerical scheme are discussed. It is shown that the proposed numerical scheme is fourth-order convergent in time and spectral convergent in space. Numerical experiments are performed on one-, two-, and three-dimensional fractional nonlinear Schrödinger equations and systems of two-, and three-dimensional equations. In addition, a realistic two-dimensional example with the solution of a singularity occurring in finite time is included. The results demonstrate accuracy, efficiency, and reliability of the scheme. Computational results arising from the experiments are compared with relevant known schemes, such as the fourth-order split-step Fourier method, the fourth-order explicit Runge-Kutta method, and a mass-conservative spectral method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 75, Issue 12, 15 June 2018, Pages 4438-4457
Journal: Computers & Mathematics with Applications - Volume 75, Issue 12, 15 June 2018, Pages 4438-4457
نویسندگان
Xiao Liang, Abdul Q.M. Khaliq,