کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6891877 | 1445342 | 2018 | 22 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Investigation on different discrete velocity quadrature rules in gas-kinetic unified algorithm solving Boltzmann model equation
ترجمه فارسی عنوان
بررسی قواعد چهار بعدی سرعت گسسته در الگوریتم یکپارچه سازی گاز-جنبشی حل معادله مدل بولتزمن
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
چکیده انگلیسی
Numerical simulations for the Sod and Lax shock-tube problems and the shock-density wave disturbing interaction problems are conducted by using GKUA with the above quadrature rules to make comparison. All quadrature rules can obtain nice accurate results with different number of the DVO points. The original and modified Gauss-Hermite quadrature rules, using the least DVO nodes to obtain results with enough computed precision, are the best options for GKUA to simulate low mach number flow regimes, while the Gauss-Chebyshev quadrature rule, which can obtain results with adequate and controllable precision for a wide integral interval using little DVO nodes, is the most appropriate quadrature rule for GKUA solving some complex and high mach number flows covering various flow regimes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 75, Issue 11, 1 June 2018, Pages 4179-4200
Journal: Computers & Mathematics with Applications - Volume 75, Issue 11, 1 June 2018, Pages 4179-4200
نویسندگان
Wen-Qiang Hu, Zhi-Hui Li,