کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6892041 1445346 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonlinear evolution equation
چکیده انگلیسی
Based on Hirota bilinear method, N-solitons, breathers, lumps and rogue waves as exact solutions of the (3+1)-dimensional nonlinear evolution equation are obtained. The impacts of the parameters on these solutions are analyzed. The parameters can influence and control the phase shifts, propagation directions, shapes and energies for these solutions. The single-kink soliton solution and interactions of two and three-kink soliton overtaking collisions of the Hirota bilinear equation are investigated in different planes. The breathers in three dimensions possess different dynamics in different planes. Via a long wave limit of breathers with indefinitely large periods, rogue waves are obtained and localized in time. It is shown that the rogue wave possess a growing and decaying line profile that arises from a nonconstant background and then retreat back to the same nonconstant background again. The results can be used to illustrate the interactions of water waves in shallow water. Moreover, figures are given out to show the properties of the explicit analytic solutions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 75, Issue 7, 1 April 2018, Pages 2538-2548
نویسندگان
, , ,