کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6892096 1445348 2018 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
L1 Fourier spectral methods for a class of generalized two-dimensional time fractional nonlinear anomalous diffusion equations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
L1 Fourier spectral methods for a class of generalized two-dimensional time fractional nonlinear anomalous diffusion equations
چکیده انگلیسی
In this paper, L1 Fourier spectral methods are derived to obtain the numerical solutions for a class of generalized two-dimensional time-fractional nonlinear anomalous diffusion equations involving Caputo fractional derivative. Firstly, we establish the L1 Fourier Galerkin full discrete and L1 Fourier collocation schemes with Fourier spectral discretization in spatial direction and L1 difference method in temporal direction. Secondly, stability and convergence for both Galerkin and collocation approximations are proved. It is shown that the proposed methods are convergent with spectral accuracy in space and (2−α) order accuracy in time. For implementation, the equivalence between pseudospectral method and collocation method is discussed. Furthermore, a numerical algorithm of Fourier pseudospectral method is developed based on two-dimensional fast Fourier transform (FFT2) technique. Finally, numerical examples are provided to test the theoretical claims. As is shown in the numerical experiments, Fourier spectral methods are powerful enough with excellent efficiency and accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 75, Issue 5, 1 March 2018, Pages 1515-1530
نویسندگان
, , ,