کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6892203 | 1445351 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we consider a singularly perturbed convection-diffusion equation posed on the unit square, where the solution has two characteristic layers and an exponential layer. A Galerkin finite element method on a Shishkin mesh is used to solve this problem. Its bilinear forms in different subdomains are carefully analyzed by means of a series of integral inequalities; a delicate analysis for the characteristic layers is needed. Based on these estimations, we prove supercloseness bounds of order 3â2 (up to a logarithmic factor) on triangular meshes and of order 2 (up to a logarithmic factor) on hybrid meshes respectively. The result implies that the hybrid mesh, which replaces the triangles of the Shishkin mesh by rectangles in the exponential layer region, is superior to the Shishkin triangular mesh. Numerical experiments illustrate these theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 75, Issue 2, 15 January 2018, Pages 444-458
Journal: Computers & Mathematics with Applications - Volume 75, Issue 2, 15 January 2018, Pages 444-458
نویسندگان
Xiaowei Liu, Jin Zhang,