کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6892203 1445351 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers
چکیده انگلیسی
In this paper, we consider a singularly perturbed convection-diffusion equation posed on the unit square, where the solution has two characteristic layers and an exponential layer. A Galerkin finite element method on a Shishkin mesh is used to solve this problem. Its bilinear forms in different subdomains are carefully analyzed by means of a series of integral inequalities; a delicate analysis for the characteristic layers is needed. Based on these estimations, we prove supercloseness bounds of order 3∕2 (up to a logarithmic factor) on triangular meshes and of order 2 (up to a logarithmic factor) on hybrid meshes respectively. The result implies that the hybrid mesh, which replaces the triangles of the Shishkin mesh by rectangles in the exponential layer region, is superior to the Shishkin triangular mesh. Numerical experiments illustrate these theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 75, Issue 2, 15 January 2018, Pages 444-458
نویسندگان
, ,