کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6892456 | 1445357 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A semi-analytical Fourier spectral method for the Swift-Hohenberg equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
چکیده انگلیسی
The Swift-Hohenberg (SH) equation has been widely used as a model for the study of pattern formation. The SH equation is a fourth-order nonlinear partial differential equation and cannot generally be solved analytically. Therefore, computer simulations play an essential role in understanding of nonequilibrium processing. The aim of this paper is to present first- and second-order semi-analytical Fourier spectral methods as an accurate and efficient approach for solving the SH equation. The methods are based on the operator splitting method and are to split the SH equation into linear and nonlinear subequations. The linear and nonlinear subequations have closed-form solutions in the Fourier and physical spaces, respectively. The methods are simple to implement and computationally cheap to achieve high-order time accuracy. Numerical experiments are presented demonstrating the accuracy and efficiency of proposed methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Mathematics with Applications - Volume 74, Issue 8, 15 October 2017, Pages 1885-1896
Journal: Computers & Mathematics with Applications - Volume 74, Issue 8, 15 October 2017, Pages 1885-1896
نویسندگان
Hyun Geun Lee,