کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
689281 889601 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using uncertain prior knowledge to improve identified nonlinear dynamic models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی تکنولوژی و شیمی فرآیندی
پیش نمایش صفحه اول مقاله
Using uncertain prior knowledge to improve identified nonlinear dynamic models
چکیده انگلیسی

This paper addresses the parameter-estimation problem for linear-in-the-parameter nonlinear models for the case in which uncertain prior knowledge is available in the form of noisy steady-state data. An uncertainty-weighted least-squares (UWLS) algorithm is developed which takes into account not only the dynamical and the steady-state data but also a measure of relative uncertainty of both data sets. Also, it is shown that a previously developed bi-objective optimization estimator is a special case of UWLS. A consequence of this is that UWLS can take advantage of tools developed in the context of multiobjective optimization to automatically determine an adequate relative uncertainty measure for dynamical and steady-state data sets. The developed algorithm and related ideas are investigated and illustrated by means of examples that use simulated and measured data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 21, Issue 1, January 2011, Pages 82–91
نویسندگان
, ,