کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
690021 | 889668 | 2009 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Affine modeling of nonlinear multivariable processes using a new adaptive neural network-based approach
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تکنولوژی و شیمی فرآیندی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a new method for on-line identification of exact affine model for multivariable processes with nonlinear and time-varying behaviors. A self-generating radial basis function (RBF) neural network trained by growing and pruning algorithm for RBF (GAP-RBF) is utilized for deriving the affine model. The extended Kalman filter (EKF) is used for parameter adaptation in the GAP-RBF neural network. The growing and pruning criteria of the original GAP-RBF have been modified with the objective to enhance its performance in on-line identification. Simulation results on two nonlinear multivariable CSTR benchmark problems show an excellent performance of the proposed approach, incorporated with the modified GAP-RBF (MGAP-RBF) neural network, for affine modeling.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 19, Issue 3, March 2009, Pages 380-393
Journal: Journal of Process Control - Volume 19, Issue 3, March 2009, Pages 380-393
نویسندگان
Amin Sabet Kamalabady, Karim Salahshoor,