کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6923817 | 1448364 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Real-time object detection in agricultural/remote environments using the multiple-expert colour feature extreme learning machine (MEC-ELM)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is necessary for autonomous robotics in agriculture to provide real time feedback, but due to a diverse array of objects and lack of landscape uniformity this objective is inherently complex. The current study presents two implementations of the multiple-expert colour feature extreme learning machine (MEC-ELM). The MEC-ELM is a cascading algorithm that has been implemented along side a summed area table (SAT) for fast feature extraction and object classification, for a fully functioning object detection algorithm. The MEC-ELM is an implementation of the colour feature extreme learning machine (CF-ELM), which is an extreme learning machine (ELM) with a partially connected hidden layer; taking three colour bands as inputs. The colour implementation used with the SAT enable the MEC-ELM to find and classify objects quickly, with 84% precision and 91% recall in weed detection in the Y'UV colour space and in 0.5â¯s per frame. The colour implementation is however limited to low resolution images and for this reason a colour level co-occurrence matrix (CLCM) variant of the MEC-ELM is proposed. This variant uses the SAT to produce a CLCM and texture analyses, with texture values processed as an input to the MEC-ELM. This enabled the MEC-ELM to achieve 78-85% precision and 81-93% recall in cattle, weed and quad bike detection and in times between 1 and 2â¯s per frame. Both implementations were benchmarked on a standard i7 mobile processor. Thus the results presented in this paper demonstrated that the MEC-ELM with SAT grid and CLCM makes an ideal candidate for fast object detection in complex and/or agricultural landscapes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Industry - Volume 98, June 2018, Pages 183-191
Journal: Computers in Industry - Volume 98, June 2018, Pages 183-191
نویسندگان
Edmund J. Sadgrove, Greg Falzon, David Miron, David W. Lamb,