کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6932212 | 867636 | 2015 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence
ترجمه فارسی عنوان
پایداری و همگرایی طرح های اختلاف محدود برای یک کلاس از معادلات خرده مقیاس فروپاشی زیر بر اساس برخی از ابررسانا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
This paper is devoted to the construction and analysis of finite difference methods for solving a class of time-fractional subdiffusion equations. Based on the certain superconvergence at some particular points of the fractional derivative by the traditional first-order Grünwald-Letnikov formula, some effective finite difference schemes are derived. The obtained schemes can achieve the global second-order numerical accuracy in time, which is independent of the values of anomalous diffusion exponent α (0<α<1) in the governing equation. The spatial second-order scheme and the spatial fourth-order compact scheme, respectively, are established for the one-dimensional problem along with the strict analysis on the unconditional stability and convergence of these schemes by the discrete energy method. Furthermore, the extension to the two-dimensional case is also considered. Numerical experiments support the correctness of the theoretical analysis and effectiveness of the new developed difference schemes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 280, 1 January 2015, Pages 510-528
Journal: Journal of Computational Physics - Volume 280, 1 January 2015, Pages 510-528
نویسندگان
Guang-Hua Gao, Hai-Wei Sun, Zhi-Zhong Sun,