کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6941409 1450110 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
RevHashNet: Perceptually de-hashing real-valued image hashes for similarity retrieval
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
RevHashNet: Perceptually de-hashing real-valued image hashes for similarity retrieval
چکیده انگلیسی
Image hashing has attracted increasing popularity in recent years. Some off-the-shelf image hashing methods are able to generate more compact and robust hashes for fast indexing and content-based similarity retrieval. However, the ability to infer original image contents from their real-valued image hashes has seldom been examined. Inherited from cryptographic hashing for image privacy protection, general image hashing is supposed to be a non-revertible function. Should there be a way to revert (or perceptually reconstruct) images from the corresponding real-valued image hashes? This paper explores the feasibility of perceptually image hashing reversion, and fill this gap by proposing a deep learning based framework, entitled RevHashNet. Given real-valued image hashes from certain image hashing methods, the proposed RevHashNet can automatically reconstruct perceptually similar images with respect to the original ones with high visual quality. Experiments and simulations on real image datasets support the de-hashing effectiveness of the proposed RevHashNet.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing: Image Communication - Volume 68, October 2018, Pages 68-75
نویسندگان
, , , ,