کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
695046 1460644 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data-driven robust receding horizon fault estimation
ترجمه فارسی عنوان
برآورد خطای افق در حال فروکش قدرتمند داده محور
کلمات کلیدی
روش داده محور ؛ خطا برآورد؛ برآورد افق در حال فروکش؛ عدم قطعیت پارامتر
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی

This paper presents a data-driven receding horizon fault estimation method for additive actuator and sensor faults in unknown linear time-invariant systems, with enhanced robustness to stochastic identification errors. State-of-the-art methods construct fault estimators with identified state-space models or Markov parameters, without compensating for identification errors. Motivated by this limitation, we first propose a receding horizon fault estimator parameterized by predictor Markov parameters. This estimator provides (asymptotically) unbiased fault estimates as long as the subsystem from faults to outputs has no unstable transmission zeros. When the identified Markov parameters are used to construct the above fault estimator, stochastic identification errors appear as model uncertainty multiplied with unknown fault signals and online system inputs/outputs (I/O). Based on this fault estimation error analysis, we formulate a mixed-norm problem for the offline robust design that regards online I/O data as unknown. An alternative online mixed-norm problem is also proposed that can further reduce estimation errors at the cost of increased computational burden. Based on a geometrical interpretation of the two proposed mixed-norm problems, systematic methods to tune the user-defined parameters therein are given to achieve desired performance trade-offs. Simulation examples illustrate the benefits of our proposed methods compared to recent literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 71, September 2016, Pages 210–221
نویسندگان
, , , ,