کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6951850 1451706 2018 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A generalised differential sparsity measure for reconstructing compressively sampled signals
ترجمه فارسی عنوان
معیار دیفرانسیل تعمیم یافته برای بازسازی سیگنال های نمونه گیری فشرده
کلمات کلیدی
ضریب سیگنال، نمونه برداری فشرده، اسپیریت دیفرانسیل، بازسازی سیگنال،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
Recent advances in signal compression, sampling and analysis have accentuated the importance of sparse representations of signals. A plethora of measures have been presented in the literature for estimating signal sparsity. In this paper, based on the concept that sparsity is encoded in the differences among the signal coefficients, we propose a novel parametric Generalised Differential Sparsity (GDS) measure and we rigorously prove that satisfies a set of objective criteria. Moreover, we prove that GDS interpolates between l0 norm and Gini Index (GI), both of which prove to be specific instances of GDS, demonstrating the generalisation power of our framework. In showcasing the potential of GDS, we incorporate it in Simultaneous Perturbation Stochastic Approximation (SPSA) method and experimentally investigate its efficacy in recovering compressively sampled sparse signals. In the SPSA context, we prove that GDS, in comparison to GI, loosens the bounds of the assumed sparsity of the original signals and reduces the minimum number of compressive samples, required to guarantee an almost perfect recovery of heavily compressed signals. Finally, through a comparison with various sparse recovery methodologies, we show the superiority of SPSA+GDS in recovering both synthetic and real data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 74, March 2018, Pages 14-29
نویسندگان
, , , ,