کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6952034 | 1451735 | 2015 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sparse Bayesian Learning for non-Gaussian sources
ترجمه فارسی عنوان
یادگیری زبان بیسسی برای منابع غیر گاوسی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
In this paper, we show that in the multiple measurement vector model we can take advantage of having multiple samples to learn the properties of the distributions of the sources as part of the recovery process and demonstrate that this improves the recovery performance. We propose a method to solve the simultaneous sparse approximation problem using a mixture of Gaussians prior, inspired by existing Sparse Bayesian Learning approaches. We justify our proposed prior by showing that there are a number of signals modelled better by a mixture of Gaussians prior than the standard zero-mean Gaussian prior, such as communications signals which often have a multimodal distribution. We further show that this method can be applied to data distributed according to an alpha-stable distribution. We also show that our proposed method can be applied to compressed sensing of ultrasound images and demonstrate an improvement over existing methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Digital Signal Processing - Volume 45, October 2015, Pages 2-12
Journal: Digital Signal Processing - Volume 45, October 2015, Pages 2-12
نویسندگان
Richard Porter, Vladislav Tadic, Alin Achim,