کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
695618 890309 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Detecting abnormal situations using the Kullback–Leibler divergence
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Detecting abnormal situations using the Kullback–Leibler divergence
چکیده انگلیسی

This article develops statistics based on the Kullback–Leibler (KL) divergence to monitor large-scale technical systems. These statistics detect anomalous system behavior by comparing estimated density functions for the current process behavior with reference density functions. For Gaussian distributed process variables, the paper proves that the difference in density functions, measured by the KL divergence, is a more sensitive measure than existing work involving multivariate statistics. To cater for a wide range of potential application areas, the paper develops monitoring concepts for linear static systems, that can produce Gaussian as well as non-Gaussian distributed process variables. Using recorded data from a glass melter, the article demonstrates the increased sensitivity of the KL-based statistics by comparing them to competitive ones.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 50, Issue 11, November 2014, Pages 2777–2786
نویسندگان
, , , , ,