کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6962529 | 1452271 | 2016 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000Â m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 79, May 2016, Pages 1-9
Journal: Environmental Modelling & Software - Volume 79, May 2016, Pages 1-9
نویسندگان
Shannon C. Groff, Cynthia S. Loftin, Frank Drummond, Sara Bushmann, Brian McGill,