کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
696308 | 890331 | 2014 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Enhancing statistical performance of data-driven controller tuning via L2L2-regularization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Noniterative data-driven techniques are design methods that allow optimal feedback control laws to be derived from input–output (I/O) data only, without the need of a model of the process. A drawback of these methods is that, in their standard formulation, they are not statistically efficient. In this paper, it is shown that they can be reformulated as L2L2-regularized optimization problems, by keeping the same assumptions and features, such that their statistical performance can be enhanced using the same identification dataset. A convex optimization method is also introduced to find the regularization matrix. The proposed strategy is finally tested on a benchmark example in the digital control system design.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 50, Issue 5, May 2014, Pages 1514–1520
Journal: Automatica - Volume 50, Issue 5, May 2014, Pages 1514–1520
نویسندگان
Simone Formentin, Alireza Karimi,