کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6963584 1644961 2014 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced biomass prediction by assimilating satellite data into a crop growth model
ترجمه فارسی عنوان
پیش بینی زیست توده پیشرفته با به دست آوردن داده های ماهواره ای به یک مدل رشد محصول
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزار
چکیده انگلیسی
Complex crop growth models (CGM) require a large number of input parameters, which can cause large errors if they are uncertain. Furthermore, they often lack spatial information. The coupling of a CGM with a radiative transfer model offers the possibility to assimilate remote sensing data while taking into account uncertainties in input parameters. A particle filter was used to assimilate satellite data into a CGM coupled with a leaf-canopy radiative transfer model to update biomass simulations of maize. The synthetic experiment set up to test the reliability of the procedure, highlighted the importance of the acquisition time. The real case study with RapidEye observations confirmed these findings. Data assimilation increased the accuracy of biomass predictions in the majority of the six maize fields where biomass validation data was available, with improvements of up to 15%. The smallest and largest errors in biomass prediction after assimilation were 82 kg/ha and 2116 kg/ha, respectively. Furthermore, data assimilation enabled the production of biomass maps showing detailed spatial variability.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 62, December 2014, Pages 437-453
نویسندگان
, , , , , , , , , ,