کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6963842 | 1452293 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An insight into machine-learning algorithms to model human-caused wildfire occurrence
ترجمه فارسی عنوان
یک بینش به الگوریتم های یادگیری ماشین برای مدل سازی وقوع آتشسوزی ناشی از انسان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
فراگیری ماشین، مدل، آتش سوزی، جنگل تصادفی افزایش رگرسیون درخت، پشتیبانی ماشین بردار
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزار
چکیده انگلیسی
This paper provides insight into the use of Machine Learning (ML) models for the assessment of human-caused wildfire occurrence. It proposes the use of ML within the context of fire risk prediction, and more specifically, in the evaluation of human-induced wildfires in Spain. In this context, three ML algorithms-Random Forest (RF), Boosting Regression Trees (BRT), and Support Vector Machines (SVM)-are implemented and compared with traditional methods like Logistic Regression (LR). Results suggest that the use of any of these ML algorithms leads to an improvement in the accuracy-in terms of the AUC (area under the curve)-of the model when compared to LR outputs. According to the AUC values, RF and BRT seem to be the most adequate methods, reaching AUC values of 0.746 and 0.730 respectively. On the other hand, despite the fact that the SVM yields an AUC value higher than that from LR, the authors consider it inadequate for classifying wildfire occurrences because its calibration is extremely time-consuming.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Environmental Modelling & Software - Volume 57, July 2014, Pages 192-201
Journal: Environmental Modelling & Software - Volume 57, July 2014, Pages 192-201
نویسندگان
Marcos Rodrigues, Juan de la Riva,