کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
696696 | 890345 | 2010 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bayesian system identification via Markov chain Monte Carlo techniques
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The work here explores new numerical methods for supporting a Bayesian approach to parameter estimation of dynamic systems. This is primarily motivated by the goal of providing accurate quantification of estimation error that is valid for arbitrary, and hence even very short length data records. The main innovation is the employment of the Metropolis–Hastings algorithm to construct an ergodic Markov chain with invariant density equal to the required posterior density. Monte Carlo analysis of samples from this chain then provides a means for efficiently and accurately computing posteriors for model parameters and arbitrary functions of them.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 46, Issue 1, January 2010, Pages 40–51
Journal: Automatica - Volume 46, Issue 1, January 2010, Pages 40–51
نویسندگان
Brett Ninness, Soren Henriksen,