کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
696916 890352 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
R(λλ) imitation learning for automatic generation control of interconnected power grids
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
R(λλ) imitation learning for automatic generation control of interconnected power grids
چکیده انگلیسی

The goal of average reward reinforcement learning is to maximize the long-term average rewards of a generic system. This coincides with the design objective of the control performance standards (CPS) which were established to improve the long-term performance of an automatic generation controller (AGC) used for real-time control of interconnected power systems. In this paper, a novel R(λλ) imitation learning (R(λλ)IL) method based on the average reward optimality criterion is presented to develop an optimal AGC under the CPS. This R(λλ)IL-based AGC can operate online in real-time with high CPS compliances and fast convergence rate in the imitation pre-learning process. Its capability to learn the control behaviors of the existing AGC by observing system variations enable it to overcome the serious defect in the applicability of conventional RL controllers, in which an accurate power system model is required for the offline pre-learning process, and significantly enhance the learning efficiency and control performance for power generation control in various power system operation scenarios.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 48, Issue 9, September 2012, Pages 2130–2136
نویسندگان
, , , , , ,