کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
697176 890361 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotically optimal orthonormal basis functions for LPV system identification
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Asymptotically optimal orthonormal basis functions for LPV system identification
چکیده انگلیسی

A global model structure is developed for parametrization and identification of a general class of Linear Parameter-Varying (LPV) systems. By using a fixed orthonormal basis function (OBF) structure, a linearly parametrized model structure follows for which the coefficients are dependent on a scheduling signal. An optimal set of OBFs for this model structure is selected on the basis of local linear dynamic properties of the LPV system (system poles) that occur for different constant scheduling signals. The selected OBF set guarantees in an asymptotic sense the least worst-case modeling error for any local model of the LPV system. Through the fusion of the Kolmogorov nn-width theory and Fuzzy c-Means clustering, an approach is developed to solve the OBF-selection problem for discrete-time LPV systems, based on the clustering of observed sample system poles.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 45, Issue 6, June 2009, Pages 1359–1370
نویسندگان
, , ,