کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
698383 890406 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance analysis of multi-innovation gradient type identification methods
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Performance analysis of multi-innovation gradient type identification methods
چکیده انگلیسی

It is well-known that the stochastic gradient (SG) identification algorithm has poor convergence rate. In order to improve the convergence rate, we extend the SG algorithm from the viewpoint of innovation modification and present multi-innovation gradient type identification algorithms, including a multi-innovation stochastic gradient (MISG) algorithm and a multi-innovation forgetting gradient (MIFG) algorithm. Because the multi-innovation gradient type algorithms use not only the current data but also the past data at each iteration, parameter estimation accuracy can be improved. Finally, the performance analysis and simulation results show that the proposed MISG and MIFG algorithms have faster convergence rates and better tracking performance than their corresponding SG algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automatica - Volume 43, Issue 1, January 2007, Pages 1–14
نویسندگان
, ,