کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
700996 | 890968 | 2009 | 5 صفحه PDF | دانلود رایگان |

The effect induced by a neighbouring co-adsorbed dopant on H abstraction from an adsorbed CH3 species on diamond has been investigated by using an ultra-soft pseudo-potential density functional theory (DFT) method under periodic boundary conditions. Both the (100) and (111) diamond surface orientations were considered with various types of dopants in two different hydrogenated forms; AHx (A = N, B, S, or P; X = 0 or 1 for S; X = 1 or 2 for N, B and P, and X = 2 or 3 for C). The H abstraction by gaseous radical H was found to be energetically favoured by the presence of the dopants in all of their different hydrogenated forms. For NH2, SH, or PH2, this effect is induced by a destabilisation of the diamond surface by sterical repulsions between the adsorbed growth species CH3 and the co-adsorbed dopant. For BH2 and the dopants in their radical form, the abstraction reaction is favoured due to the formation of a new covalent bond between the dopant and the co-adsorbed CH2 (product of the abstraction reaction), which strongly stabilises the surface after the abstraction process.
Journal: Diamond and Related Materials - Volume 18, Issue 9, September 2009, Pages 1152–1156