کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
701863 891056 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Carbon nanotunnels form from single-walled carbon nanotubes interacting with a diamond (100)–(2 × 1) surface
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی برق و الکترونیک
پیش نمایش صفحه اول مقاله
Carbon nanotunnels form from single-walled carbon nanotubes interacting with a diamond (100)–(2 × 1) surface
چکیده انگلیسی

A quantum chemical study of the interaction of (5,5), (7,7), (9,9) and (8,0) single-walled carbon nanotubes with a clean (100)-(2 × 1) diamond surface is reported. Stable structures with covalent bonds at the interface were found for carbon nanotubes oriented parallel or perpendicular to the dimer rows on the reconstructed (100) surface. The binding energy of the most stable (5,5) nanotube-diamond structure is 1.7 eV/Å, and is attributed to strong covalent bonds formed between the carbon nanotube and the diamond surface. The structure of the nanotube is distorted by adsorption on the surface such that it adopts a tunnel-like geometry. Two other nanotunnel geometries were found for the (5,5) nanotube, with binding energies of 1.39 and 1.09 eV/Å. In the most stable (5,5) nanotube-diamond structure the interaction between the nanotube and the diamond surface produces a 0.6 eV band gap near the Fermi level, but the metallic character of the nanotube is maintained in the two other, less strongly bound nanotunnel structures. No charge transfer occurs between the diamond surface and the nanotunnels in any of the three orientations. Binding energies decrease with increases in tube diameter, to the extent that one of the three nanotunnel structures is not formed by (9,9) carbon nanotubes.

Figure optionsDownload as PowerPoint slideHighlights
► (n,n) SWNTs form tunnel structures upon adsorption onto clean diamond (100)-(2 × 1).
► Some carbon nanotunnels retain the metallic character of the isolated nanotubes.
► Nanotube-diamond binding energies decrease with increases in tube diameter.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Diamond and Related Materials - Volume 20, Issue 8, August 2011, Pages 1103–1109
نویسندگان
, , , ,