کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7054157 1458016 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermal diode using controlled capillary in heterogeneous nanopores
ترجمه فارسی عنوان
دیود گرمایی با استفاده از مویرگهای کنترل شده در نانوپورهای ناهمگن
کلمات کلیدی
آرگون، جذب، گاز نانوذره، انتقال حرارت غیر خطی، شبیه سازی مونت کارلو بزرگ کانونیک، اصلاح
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
چکیده انگلیسی
The development of a compact, efficient, reliable thermal diode is crucial to improve advanced thermal management efficiency and controllability, and to enable brand new applications such as thermal logic gates and computers. In this study, we examine a nanoscale and efficient capillary-controlled thermal diode mechanism in Ar-filled Pt-based heterogeneous nanoporous structures, using Grand Canonical Monte Carlo (GCMC) simulation combined with Non-Equilibrium Molecular Dynamics (NEMD) simulation at the temperature range of 70-150 K and the pressure of 1.66 atm. Results show that the large thermal conductivity contrast between the controlled adsorption and capillary states using the structural heterogeneity (nanopillars on only one surface) and/or material heterogeneity (two different materials for nanogap surfaces) allows for the maximum thermal rectification ratio, Rmax ∼ 140 with minimal hysteresis under the cyclic operating temperatures −40 K < ΔT < +40 K. It is also found that the material heterogeneity is equivalent to the structural heterogeneity for minimizing the hysteresis in adsorption-capillary transition, but the heat flux across the nanogap with the material heterogeneity reduces due to weaker Ar-solid interaction. The coupled structural-material heterogeneity for the capillary-driven thermal diode is also discussed. The obtained results pave pathways for advanced thermal management systems such as thermal transistors, thermal logic gates, and computers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 124, September 2018, Pages 201-209
نویسندگان
, ,