کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7054454 | 1458019 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder
ترجمه فارسی عنوان
تجزیه و تحلیل و مدل سازی پیش بینی جریان خنک کننده نانوسیم های جت بر روی یک سطح ایزوترمال تحت تاثیر سیلندر چرخشی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نانوفیلد ها، ضربه جت، روش حجم محدود پیش بینی های حرارتی، سیلندر چرخشی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
چکیده انگلیسی
In this paper, numerical study and thermal prediction for a nanofluid jet impingement cooling of an isothermal hot surface with an adiabatic rotating cylinder were performed. Finite volume method was used for the solution of resulting governing equations along with the boundary conditions. Influence of various pertinent parameters such as Reynolds number (between 100 and 400), angular rotational velocity of the cylinder (between â0.1 and 0.1), horizontal location of the cylinder (between 0 and 3.75w) and solid particle volume fraction (between 0 and 0.04) on the fluid flow thermal characteristics were examined. It was observed that cylinder rotation and its location affect the cooling performance of the hot surface. It can be used as control element for heat and fluid flow. At the highest angular rotational speed as compared to motionless cylinder case, average Nusselt number reduces by about 20.16% for clockwise rotation. Solid particle addition to the base fluid affects the variation of first and secondary peaks in the Nusselt number along the hot wall. At the highest solid when the cylinder is away from the inlet slot and average Nusselt number enhancement is by about 8.08% at the highest volume fraction. An efficient modeling strategy was developed based on proper orthogonal decomposition and radial basis neural networks for thermal predictions. Accurate and fast results were achieved as compared to high fidelity computational fluid dynamics simulation results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 121, June 2018, Pages 233-245
Journal: International Journal of Heat and Mass Transfer - Volume 121, June 2018, Pages 233-245
نویسندگان
Fatih Selimefendigil, Hakan F. Ãztop,