کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7055336 1458040 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quality and reliability of LES of convective scalar transfer at high Reynolds numbers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Quality and reliability of LES of convective scalar transfer at high Reynolds numbers
چکیده انگلیسی
Numerical studies were performed to assess the quality and reliability of wall-modeled large eddy simulation (LES) for studying convective heat and mass transfer over bluff bodies at high Reynolds numbers (Re), with a focus on built structures in the atmospheric boundary layer. Detailed comparisons were made with both wind-tunnel experiments and field observations. The LES was shown to correctly capture the spatial patterns of the transfer coefficients around two-dimensional roughness ribs (with a discrepancy of about 20%) and the average Nusselt number (Nu) over a single wall mounted cube (with a discrepancy of about 25%) relative to wind tunnel measurements. However, the discrepancy in Re between the wind tunnel measurements and the real-world applications that the code aims to address influence the comparisons since Nu is a function of Re. Evaluations against field observations are therefore done to overcome this challenge; they reveal that, for applications in urban areas, the wind-tunnel studies result in a much lower range for the exponent m in the classic Nu ∼ Rem relations, compared to field measurements and LES (0.52-0.74 versus ≈ 0.9). The results underline the importance of conducting experimental or numerical studies for convective scalar transfer problems at a Re commensurate with the flow of interest, and support the use of wall-modeled LES as a technique for this problem that can already capture important aspects of the physics, although further development and testing are needed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 102, November 2016, Pages 959-970
نویسندگان
, , , , ,