کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7104186 | 1460336 | 2018 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Dynamic concurrent kernel CCA for strip-thickness relevant fault diagnosis of continuous annealing processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
تکنولوژی و شیمی فرآیندی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The practitioners are concerned with strip-thickness relevant faults of steel-making cold-rolling continuous annealing process (CAP) which is a typical dynamic nonlinear process. In this paper, a novel data-driven dynamic concurrent kernel canonical correlation analysis (DCKCCA) approach is proposed for the diagnosis of the CAP strip thickness relevant faults. First, a DCKCCA algorithm is proposed to capture dynamic nonlinear correlations between strip thickness and process variables. Strip thickness specific variations, process-specific variations, and thickness-process covariations are monitored respectively. Secondly, a multi-block extension of DCKCCA is designed to compute the contributions according to block partition of lagged variables, in order to help localize faults relevant to abnormal strip thickness. Finally, the proposed methods are illustrated by the application to a real continuous annealing process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Process Control - Volume 67, July 2018, Pages 12-22
Journal: Journal of Process Control - Volume 67, July 2018, Pages 12-22
نویسندگان
Qiang Liu, Qinqin Zhu, S. Joe Qin, Tianyou Chai,