کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7155175 1462606 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Defining universality classes for three different local bifurcations
ترجمه فارسی عنوان
تعریف کلاسهای جهانی برای سه نوع مختلف بیوگرافی محلی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی
The convergence to the fixed point at a bifurcation and near it is characterized via scaling formalism for three different types of local bifurcations of fixed points in differential equations, namely: (i) saddle-node; (ii) transcritical; and (iii) supercritical pitchfork. At the bifurcation, the convergence is described by a homogeneous function with three critical exponents α, β and z. A scaling law is derived hence relating the three exponents. Near the bifurcation the evolution towards the fixed point is given by an exponential function whose relaxation time is marked by a power law of the distance of the bifurcation point with an exponent δ. The four exponents α, β, z and δ can be used to defined classes of universality for the local bifurcations of fixed points in differential equations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 39, October 2016, Pages 520-528
نویسندگان
,