کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7232898 | 1470969 | 2014 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
As thiocyanate (SCNâ) acts as an important biomarker in human health assessment, there remains an urgent need to realize rapid and reproducible analysis of SCNâ in body fluids. Here, a droplet microfluidic device has been designed and fabricated for SCNâ detection in real human serum and saliva using the surface enhanced Raman scattering (SERS) technique. Only a few minutes are needed for the whole detection process which simply cost a few microliters of real sample. Gold@silver core-shell nanorods (Au@Ag NRs) with a large SERS enhancement factor were selected to capture SCNâ ions in body fluids. The intensity of SERS peak at around 2100 cmâ1, which originates from the -Câ¡N stretching mode, was used to indicate the concentrations of SCNâ ions. Importantly, by generating a droplet environment for mixing reagents and acquiring signals, this microfluidic platform possesses the advantages of an improved reproducibility and reduced time consumption. For practical applications, the SERS-microfluidic system is capable to achieve rapid analysis of SCNâ in the presence of human serum, which is very important for realizing the detection in real biological samples. Additionally, SCNâ in saliva samples was detected in the SERS-microfluidic chip and the results provide useful information for distinguishing between smokers and nonsmokers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosensors and Bioelectronics - Volume 62, 15 December 2014, Pages 13-18
Journal: Biosensors and Bioelectronics - Volume 62, 15 December 2014, Pages 13-18
نویسندگان
Lei Wu, Zhuyuan Wang, Shenfei Zong, Yiping Cui,