کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7237433 | 1471121 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Constitutive modeling of compressible type-I collagen hydrogels
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی پزشکی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Collagen hydrogels have been used ubiquitously as engineering biomaterials with a biphasic network of fibrillar collagen and aqueous-filled voids that contribute to a complex, compressible, and nonlinear mechanical behavior - not well captured within the infinitesimal strain theory. In this study, type-I collagen, processed from a bovine corium, was fabricated into disks at 2, 3, and 4% (w/w) and exposed to 0, 105, 106, and 107 microjoules of ultraviolet light or enzymatic degradation via matrix metalloproteinase-2. Fully hydrated gels were subjected to unconfined, aqueous, compression testing with experimental data modeled within a continuum mechanics framework by employing the uncommon Blatz-Ko material model for porous elastic materials and a nonlinear form of the Poisson's ratio. From the Generalized form, the Special Blatz-Ko, compressible Neo-Hookean, and incompressible Mooney-Rivlin models were derived and the best-fit material parameters reported for each. The average root-mean-squared (RMS) error for the General (RMSâ¯=â¯0.13â¯Â±â¯0.07) and Special Blatz-Ko (RMSâ¯=â¯0.13â¯Â±â¯0.07) were lower than the Neo-Hookean (RMSâ¯=â¯0.23â¯Â±â¯0.10) and Mooney-Rivlin (RMSâ¯=â¯0.18â¯Â±â¯0.08) models. We conclude that, with a single fitted-parameter, the Special Blatz-Ko sufficiently captured the salient features of collagen hydrogel compression over most examined formulations and treatments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Engineering & Physics - Volume 53, March 2018, Pages 39-48
Journal: Medical Engineering & Physics - Volume 53, March 2018, Pages 39-48
نویسندگان
Brooks A. Lane, Katrina A. Harmon, Richard L. Goodwin, Michael J. Yost, Tarek Shazly, John F. Eberth,