کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
731458 893065 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An MCMC algorithm based on GUM Supplement 1 for uncertainty evaluation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
An MCMC algorithm based on GUM Supplement 1 for uncertainty evaluation
چکیده انگلیسی

This paper describes a simple Markov chain Monte Carlo algorithm for evaluating measurement uncertainty according to Bayesian principles. The algorithm has two phases, the first coinciding with the Monte Carlo method described in GUM Supplement 1 (GUMS1), the second a simple Metropolis–Hastings algorithm. The second phase can be regarded as a post-processing add-on to the GUMS1 calculation and can be used whenever a GUMS1 approach is adopted. The algorithm allows users freedom to choose their preferred prior distribution for the measurand, rather than that implicitly assigned in the GUMS1 approach, thereby avoiding some of the problems that can arise when applying GUMS1 to certain types of measurement model. The post-processing can be implemented in a few lines of software, so that many of the practical difficulties in implementing Bayesian approaches to measurement uncertainty evaluation are largely removed.


► Bayesian inference specifies a posterior distribution for a measurand.
► GUM Supplement 1 uses a specific prior for the measurand.
► We describe an MCMC scheme based on a GUMS1 sample.
► The scheme outputs a sample from the desired posterior distribution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Measurement - Volume 45, Issue 5, June 2012, Pages 1188–1199
نویسندگان
,