کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7375696 1480074 2018 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory
چکیده انگلیسی
Using intraday data of the CSI300 index, this paper discusses value-at-risk (VaR) forecasting of the Chinese stock market from the perspective of high-frequency volatility models. First, we measure the realized volatility (RV) with 5-minute high-frequency returns of the CSI300 index and then model it with the newly introduced heterogeneous autoregressive quarticity (HARQ) model, which can handle the time-varying coefficients of the HAR model. Second, we forecast the out-of-sample VaR of the CSI300 index by combining the HARQ model and extreme value theory (EVT). Finally, using several popular backtesting methods, we compare the VaR forecasting accuracy of HARQ model with other traditional HAR-type models, such as HAR, HAR-J, CHAR, and SHAR. The empirical results show that the novel HARQ model can beat other HAR-type models in forecasting the VaR of the Chinese stock market at various risk levels.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 499, 1 June 2018, Pages 288-297
نویسندگان
, , , , ,