کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7375696 | 1480074 | 2018 | 34 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Using intraday data of the CSI300 index, this paper discusses value-at-risk (VaR) forecasting of the Chinese stock market from the perspective of high-frequency volatility models. First, we measure the realized volatility (RV) with 5-minute high-frequency returns of the CSI300 index and then model it with the newly introduced heterogeneous autoregressive quarticity (HARQ) model, which can handle the time-varying coefficients of the HAR model. Second, we forecast the out-of-sample VaR of the CSI300 index by combining the HARQ model and extreme value theory (EVT). Finally, using several popular backtesting methods, we compare the VaR forecasting accuracy of HARQ model with other traditional HAR-type models, such as HAR, HAR-J, CHAR, and SHAR. The empirical results show that the novel HARQ model can beat other HAR-type models in forecasting the VaR of the Chinese stock market at various risk levels.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 499, 1 June 2018, Pages 288-297
Journal: Physica A: Statistical Mechanics and its Applications - Volume 499, 1 June 2018, Pages 288-297
نویسندگان
Guangqiang Liu, Yu Wei, Yongfei Chen, Jiang Yu, Yang Hu,