کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7378695 1480131 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A practical numerical scheme for the ternary Cahn-Hilliard system with a logarithmic free energy
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
A practical numerical scheme for the ternary Cahn-Hilliard system with a logarithmic free energy
چکیده انگلیسی
We consider a practically stable finite difference method for the ternary Cahn-Hilliard system with a logarithmic free energy modeling the phase separation of a three-component mixture. The numerical scheme is based on a linear unconditionally gradient stable scheme by Eyre and is solved by an efficient and accurate multigrid method. The logarithmic function has a singularity at zero. To remove the singularity, we regularize the function near zero by using a quadratic polynomial approximation. We perform a convergence test, a linear stability analysis, and a robustness test of the ternary Cahn-Hilliard equation. We observe that our numerical solutions are convergent, consistent with the exact solutions of linear stability analysis, and stable with practically large enough time steps. Using the proposed numerical scheme, we also study the temporal evolution of morphology patterns during phase separation in one-, two-, and three-dimensional spaces.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 442, 15 January 2016, Pages 510-522
نویسندگان
, ,