کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7496634 | 1485789 | 2014 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Spatial generalized linear mixed models with multivariate CAR models for areal data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Disease mapping studies have been widely performed with considering only one disease in the estimated models. Simultaneous modeling of different diseases can also be a valuable tool both from the epidemiological and from the statistical point of view. In particular, when we have several measurements recorded at each spatial location, we need to consider multivariate models in order to handle the dependence among the multivariate components as well as the spatial dependence between locations. These models can be studied in the class of spatial generalized linear mixed models (SGLMMs). It is well known that the frequentist analysis of SGLMMs is computationally difficult. Recently, there are a few papers which explored multivariate spatial models for areal data adopting the Bayesian framework as the natural inferential approach. We propose to use an approach, which yields to maximum likelihood estimation, to conduct frequentist analysis of SGLMMs with multivariate conditional autoregressive models for areal data. The performance of the proposed approach is evaluated through simulation studies and also by a real dataset.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spatial Statistics - Volume 10, November 2014, Pages 12-26
Journal: Spatial Statistics - Volume 10, November 2014, Pages 12-26
نویسندگان
Mahmoud Torabi,